- 数列の第n項までの和を表す式から、数列の一般項を求める問題です。
- から初項を求め、から第2項以降の項を求めます。
- 初項と第2項以降の項で求め方が異なるので、この2つが一致するか否かを判断します。
スポンサーリンク
Snから一般項を求める問題
第n項までの和がで表される数列の一般項を求めなさい。
初項から第n項までの和から一般項を求める手順
- に を代入して、を求めます。
- を計算して、のときのを求めます。
- 2で求めたにを代入して、1で求めたと比較します。
Snから一般項を求める問題の解説
まず、は初項までの和なので初項と等しくなります。 よって、にを代入することで、
が得られます。次に、の場合、は第項までの和から第項までの和を引くことで求められます。
のとき、
となります。最後に、のときのにを代入し、先に求めたと比較します。
にを代入すると
となるので、
はのときには成り立たないことになります。 このような場合は両方の式を記入し、
「のとき」 のように答えます。
参考
数学B教科書 数研出版